Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2026
- 
            In this study, we present an exploration of spontaneous symmetry breaking and pattern formation in the driven-dissipative system of Rydberg exciton polaritons with long-range interactions. Our investigation unravels the pattern formations through modulational instability, characterized by scales in the micron range. We observe the dynamics of the polariton ensemble, studying the emergence of metastable patterns and their eventual collapse in the long-time limit. This phenomenon is attributed to the destructive interference between the polariton state and the external drive within the ensemble. Further, we delineate conditions conducive to the stable formation of patterns under incoherent pumping. These findings open up various avenues for delving into the burgeoning realm of driven-dissipative and long-range interacting gases through the unique characteristics of Rydberg excitons. Published by the American Physical Society2024more » « less
- 
            Abstract To facilitate the transition of quantum effects from the controlled laboratory environment to practical real-world applications, there is a pressing need for scalable platforms. One promising strategy involves integrating thermal vapors with nanostructures designed to manipulate atomic interactions. In this tutorial, we aim to gain deeper insights into this by examining the behavior of thermal vapors that are confined within nanocavities or waveguides and exposed to near-resonant light. We explore the interactions between atoms in confined dense thermal vapors. Our investigation reveals deviations from the predictions of continuous electrodynamics models, including density-dependent line shifts and broadening effects. In particular, our results demonstrate that by carefully controlling the saturation of single atoms and the interactions among multiple atoms using nanostructures, along with controlling the geometry of the atomic cloud, it becomes possible to manipulate the effective optical nonlinearity of the entire atomic ensemble. This capability renders the hybrid thermal atom-nanophotonic platform a distinctive and valuable one for manipulating the collective effect and achieving substantial optical nonlinearities.more » « less
- 
            Abstract Cuprous oxide ($$\hbox {Cu}{}_2\hbox {O}$$ ) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to$$n^2$$ ) enables strong long-range dipole-dipole (proportional to$$n^4$$ ) and van der Waals interactions (proportional to$$n^{11}$$ ). Currently, the highest-lying Rydberg states are found in naturally occurring$$\hbox {Cu}_2\hbox {O}$$ . However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film$$\hbox {Cu}{}_2\hbox {O}$$ samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a$$\hbox {Cu}{}_2\hbox {O}$$ thin film on a transparent substrate that showcases Rydberg excitons up to$$n = 8$$ which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies.more » « less
- 
            Abstract Engineering arrays of active optical centers to control the interaction Hamiltonian between light and matter has been the subject of intense research recently. Collective interaction of atomic arrays with optical photons can give rise to directionally enhanced absorption or emission, which enables engineering of broadband and strong atom-photon interfaces. Here, we report on the observation of long-range cooperative resonances in an array of rare-earth ions controllably implanted into a solid-state lithium niobate micro-ring resonator. We show that cooperative effects can be observed in an ordered ion array extended far beyond the light’s wavelength. We observe enhanced emission from both cavity-induced Purcell enhancement and array-induced collective resonances at cryogenic temperatures. Engineering collective resonances as a paradigm for enhanced light-matter interactions can enable suppression of free-space spontaneous emission. The multi-functionality of lithium niobate hosting rare-earth ions can open possibilities of quantum photonic device engineering for scalable and multiplexed quantum networks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
